Semah Ibrahim Ben Abdelaziz, Muhammad Amad Saeed and Ahmed Ziad Benleulmi

Social Media Effect on Sustainable Products Purchase

Published in: Sustainability in Logistics and Supply Chain Management
Wolfgang Kersten, Thorsten Blecker and Christian M. Ringle (Eds.), August 2015, epubli GmbH
ISSN (online): 2365-5070, ISSN (print): 2635-4430
1 Introduction

1.1 Sustainable Supply Chain Management

Nowadays it has become less unusual for supply chain management (SCM) researchers and practitioners to incorporate sustainability in their work. In fact, as a result of a demanding globalization, companies are now expected to play a role that goes beyond the limit of the traditional "profit seeking". Today, companies are also assumed to be sensitive to environmental and social issues; and while dealing with economic issues is the heart of business, managing pressing issues such as unsafe and poor working conditions or environment-harmful production are also considered important (Brandenburg et al., 2014; Linton et al., 2007; Seuring, 2013; Walker and Jones, 2012; Wolf, 2011). Furthermore, the pressure from customers, regulatory bodies, non-governmental organizations, and internal pressures from employees coerce companies to incorporate sustainability issues into their SCM (Carter and Easton, 2011; Gold et al., 2010; Krause et al., 2009).

Sustainability in SCM is defined as "the management of material, information and capital flows as well as cooperation among companies along the supply chain while taking goals from all three dimensions of sustainability, i.e., economic, environmental and social, into account which are derived from customer and stakeholder requirements" (Seuring and Müller, 2008, p1700).

The goals of a sustainable SCM is to render maximum value to all stakeholders and fulfill customer requirements by achieving sustainable flows of products, services, information and capital as well as cooperation among supply chain participants (Seuring, 2013; Wolf, 2011; Pagell and Wu, 2009).
Due to the rising transparency offered by new form of media e.g. internet, social media, etc., and the increasing awareness customers are getting to understand well the products/brands and want to know more about the conditions under which products were manufactured and ask questions regarding sustainability of the products/brands (Carter and Rogers, 2008).

1.2 Social Media

Today, more than a third of world's entire population is using internet, out of which 53% are less than 34 years of age (comScore, 2015). Half of the internet users are active on social media (ITU, 2015). Out of 55.6 million internet users in Germany, 45 million are engaged in online purchasing activities (Statistisches Bundesamt, 2015). This demonstrates the remarkable and significant rise of internet and social media use during the past few years. Internet is increasingly shaping consumers’ habits and influencing their daily purchase behaviors by offering an indispensable platform where companies connect with customers to communicate their sustainability change initiatives (Hennig-Thurau and Walsh, 2003; Men and Tsai, 2012; Reilly and Weirup, 2010). On one hand, internet offers various ways to obtain products/brands-related information from individuals, groups and organizations. Examples of such sources include blogs, forums, wikis, content-sharing platforms, social networking, etc. (Hennig-Thurau and Walsh, 2003; Reilly and Weirup, 2010). On other hand, companies that utilize social media have better access and bigger reach to a larger pool of customers and consequently an increased opportunity to reach more customers and increased likelihood of making a purchase (Dei Worldwide, 2008).
Social Media is defined as “a group of Internet-based applications that build on the ideological and technological foundations of Web 2.0, and that allow the creation and exchange of user generated content” (Kaplan and Haenlein, 2010, p61). Users of these applications create, initiate, share, and exchange information in a virtual community (Blackshaw and Nazzaro, 2006). And later this information is used by consumers with the intent of educating each other about products, brands, services and/or issues (Ngai et al., 2015; Xiang and Gretzel, 2010).

Because of its interactive nature, social media provide access to other consumer's opinions, comments and personal experiences relating to products, brands and/or services (Xiang and Gretzel, 2010). This leads us to consumers perceived word-of-mouth (WOM) messages which are more reliable, credible, and trustworthy compared to traditional communication channels such as promotions, company initiated communications, etc., (Brown et al., 2007). Due to the free exchange of content, WOM on social media has the potential to go viral; in addition to that a single WOM message can reach and influence many receivers (Brown et al., 2007). At the same time, social media can have a significant impact on the spread of both positive and negative WOM. If a negative WOM is spread online and users start building on each other's comments, it may affect the potential user's intention to purchase of the involved product/brand as a consequence (Grégoire et al., 2015; Markos-Kujbus and Gati, 2013).

Despite the increasing relevance of social media there is a lack of research literature that investigates the importance of its effect and impact on consumers purchase behavior, regarding sustainable products/brands and
services. This study explores the exploitation of consumer knowledge regarding sustainability, gained from social media while making purchase decision about a particular product/brand. Hence the research questions of this paper are as follows:

Q1: Do social media have any effect on consumer's choices, beliefs and behavior when it comes to sustainable products/brands?
Q2: How significant is their impact?
Q3: What are the drivers of these effects?

This paper employs Media System Dependency theory (MSD) as its main theoretical framework to investigate the drivers of consumers' dependency on social media for information about sustainability and how it affects their purchase behaviour. The paper is structured as follows. In section 2, we review relevant literature in order to develop our research hypotheses. The data collection procedure and the sample along with the definitions and measurement of the constructs are described in section 3. Afterwards, the partial least squares structural equation modeling (PLS-SEM) results of both the measurement and structural model are reported in section 4. Finally, the study findings are summed and discussed in section 5.

2 Literature Review and Hypothesis Development

2.1 Media System Dependency Theory

In order to have a good understanding of the impact of social media on consumers' beliefs and behavior regarding sustainable products/brands, this research paper refers to the literature from the perspective of media effects
theories. Particularly, we believe that MSD offers a good theoretical framework to tackle the issue of social media effects on consumers’ purchase decisions with respect to sustainability (Ball-Rokeach and DeFleur, 1976). MSD is built around the distinguishing and pivotal conceptualization of media dependency relations. Ball-Rokeach and DeFleur (1976) define dependency as “a relationship in which the satisfaction of needs or the attainment of goals by one party is contingent upon the resources of another party” (Ball-Rokeach and DeFleur, 1976, p6). Accordingly, although media can control relevant important resources, influences engendered by media won’t be powerful unless a dependency on these resources exists. Therefore, “whatever the particulars of the relationship, it is the relationship that carries the burden of explanation” (DeFleur and Ball-Rokeach, 1989, p303). Individual media dependency (IMD) or the micro level of MSD, occurs when the accomplishment of personal goals is contingent upon the acquisition of information resources that are controlled by media (Ball-Rokeach, 1985). In fact, MSD posits that individuals are driven by the fundamental motives of survival and growth that can be converted into specific understanding, orientation and play goals that require the employment of media information resources and hence dependencies. Further, these dependency relations consist of personal and social levels, resulting in six different media dependency dimensions: self-understanding, social understanding, action orientation, interaction orientation, solitary play and social play. Understanding dependencies stem from the individual motivation to acquire the necessary knowledge that allows for a meaningful comprehension of one’s self and the social environ. Moreover, orientation dependencies occur when individuals refer to media information resources for decision-making
guidance to achieve a convenient behavior on both the personal and social level. Finally, contingency upon media in order to achieve entertainment and tension release goals either alone or while interacting with others, can bring about play dependencies (Ball-Rokeach, 1985).
Since MSD posits that media effects on individuals can manifest themselves as cognitive, affective and behavioral changes, this paper attempts to investigate how dependency on social media for sustainability information can alter users purchase behavior and beliefs (DeFleur and Ball-Rokeach, 1989; Ball-Rokeach and DeFleur, 1976).

2.2 **Hypothesis Development**

We define dependency on social media for sustainability information, as individuals’ contingency upon social media information resources in order to attain their objectives of making the right decisions when it comes to purchasing sustainable products/brands.
Further, individuals are less likely to engage in purchasing when they perceive themselves as lacking the sufficient knowledge to make the right purchase decisions. In fact, consumer confusion is associated with several negative effects such as altering users’ brand choice, postponing and eventually abandoning the purchase to avoid cognitive strain (Mitchell and Papa-vassiliou, 1999).
In the context of green products, previous research has shown that confusion about the attributes that make products/brands environmentally-friendly damage consumers’ trust. On the other hand, trust in a product’s environmental performance leads to purchase intention (Chen and Chang,
Furthermore, the research shows that perceived lack of expertise was a major obstacle that held back consumers from purchasing green products, particularly, when the informational messages available to consumers were scarce, numerical and undetailed. Contrarily, detailed verbal informational cues that educate users about the attributes of green products were proven to significantly enhance purchase behavior (Gleim et al., 2013).

In the offline context, such product information is either scarce or hard to provide without causing information overload and hence leading to consumer confusion (Mitchell and Papavassiliou, 1999), and would rather be embedded in social media, where users can easily find various and rich information that they can discuss and digest at their own pace. In fact, information richness of user-generated content is shown to have a better effect on purchase behavior than it is the case for marketer-generated content.

Furthermore, Hennig-Thurau and Walsh, (2003) reveal that retrieving information from online consumer-opinion platforms where users can communicate and compare their products, experiences, has a strong impact on purchase behavior. Here, dependent users are by definition the ones who satisfied such goals through social media information resources. Hence we posit that these users are more educated and aware about sustainability-related issues and products and therefore act more responsibly towards the society and the environment. Incidentally, previous media dependency research provides empirical support to the positive effect of media dependency on purchase intentions (Bigné-Alcañiz et al., 2008; Ruiz Mafé and Sanz Blas, 2006; Patwardhan and Yang, 2003).
Therefore, we hypothesize that dependency on social media for sustainability information will have a positive effect on the intention to purchase sustainable products/brands.

H1: Dependency on social media for information about sustainability has a positive effect on the intention to purchase sustainable products/brands.

Willingness to seek information about sustainability revolves around the purposeful effort to change one’s state of knowledge about sustainability issues. Hence, it is intuitive to assume that users who seek to enrich their knowledge about the subject are driven by understanding and orientation motivations that manifest as goals. Based on the previous arguments, social media are a favorable candidate when it comes to providing detailed and rich information resources about sustainability and therefore consumers with such objectives are likely to become dependent on social media. Furthermore, previous research support this assumption; for instance, a study by Bickart and Schindler (2001) shows that consumers who acquired information from online discussions displayed greater interest in the product topic than those who got their information from marketer-generated sources. Other studies have shown that motivation is a relevant driver of internet dependency (Sun et al., 2008) and that perceived usefulness leads to dependency on internet for online shopping information (Bigné-Alcañiz et al., 2008). This implies that motivated users who perceive online resources as useful will likely become dependent. More specifically, Hennig-Thurau et al. (2004) reveal that making better purchase decisions and saving decision-making time were the most relevant motives behind the use of online consumer-opinion platforms, which means that consumers could
fulfill their goals of obtaining guidance for convenient purchase decisions effectively. Therefore, we posit that:

H2: Willingness to seek information about sustainability has a positive effect on the dependency on social media for sustainability information.

We refer to Chen and Chang (2012b) to introduce two new constructs: sustainability trust on social media and sustainability risk on social media. On one hand, sustainability trust on social media is defined as the willingness to depend on a product/brand that has received positive statements regarding its sustainability features by former, actual, or potential consumers via social media, based on the belief or expectation resulting from its credibility, benevolence, and ability about its sustainability performance. On the other hand, sustainability risk on social media is about the expectation of negative consequences affecting sustainability as a result of purchasing products/brands that have been exposed to negative statements by former, actual, or potential consumers on social media, concerning their sustainability features.

The occurrence of dependency on social media for decision-making about sustainable products/brands means that the information provided by the medium was perceived to a great extent as necessary, unique, credible and useful for consumers’ orientation goals attainment. Hence, it would be reasonable to assume that dependent users are likely to adopt the information, and ultimately the beliefs supplied to them by other former, actual, or potential sustainable products/brands' consumers on social media, regarding sustainability attributes. In fact, previous studies have shown that perceived information usefulness (Cheung and Thadani, 2012; Lee et al.,
along with information credibility lead to the adoption of both positive and negative WOM online. Therefore, we posit that dependent users are more likely to adopt other consumers’ statements on social media and hence would be more prone to expect negatively commented products/brands to be risky and harmful towards the environment and society. Similarly dependency would lead to a higher perceived trust in the sustainable features of positively commented products/brands. Further, previous MSD literature has proved that dependency can lead to higher perceived food-related risk (Tucker et al., 2006) and also to stronger fan page loyalty (Ruiz-Mafe et al., 2014). Based on the previous arguments, we hypothesize that:

H3: Dependency on social media for sustainability information has a positive effect on sustainability trust on social media.

H4: Dependency on social media for sustainability information has a positive effect on sustainability risk on social media.

Former research has shown that perceived risk can have a strong negative impact on purchase intentions (Kim et al., 2008; Littler and Melanthiou, 2006; Park et al., 2005; Mitchell, 1999; Wood and Scheer, 1996). Similarly, in the context of green products, perceived risk of negative environmental consequences was proved to damage purchase intention (Chen and Chang, 2012b). Furthermore, consumers who perceive negatively commented on products/brands on social media as harmful to the environment and society are assumed to be more educated about such products and their negative impact on sustainability. Such users adopt other consumers’ negative WOM about products/brands’ sustainability attributes and accordingly expect negative outcomes from such purchases. Hence they are more likely
to avoid buying such products and their associated brands because they are aware of their negative consequences, and therefore they are more likely to engage in a sustainability-friendly purchase behavior.

H5: Sustainability risk on social media has a positive impact on the intention to purchase sustainable products/brands.

Finally, several studies have revealed that perceived trust is a key driver of purchase intention (See-To and Ho, 2014; Lin and Lu, 2010; Hsin Chang and Wen Chen, 2008; Kim et al., 2008). More specifically, trust in the environmental performance of products was shown to increase green products purchase intention (Chen and Chang, 2012b). Further, social media users who adopt positive WOM are likely to perceive themselves as acquiring sufficient information about trustworthy products with sustainability attributes. Such consumers perceive recommended products/brands as credible about their claims regarding sustainability and expect beneficial outcomes on the environmental and social level from attributes. In other words, they regard buying these products as a way to support sustainability. Therefore, we posit that these users would favor sustainable products/brands when it comes to making purchase decisions.

H6: Sustainability trust on social media has a positive impact on the intention to purchase sustainable products/brands.
3 Methodology and Measurements

3.1 Data Collection and the Sample

In order to obtain data for this study we conducted an online survey targeting educated social media users aged between 18 and 55 years old, currently residing in Germany. The survey was accessible for approximately one month starting from June 22nd, 2015. The participants were offered complete anonymity.

Ninety-one German residents answered the survey. Nine participants reported not being social media users and thus were disqualified. The remaining 82 responses were clear of any issues. To ensure that all questions be answered, participants were required to answer all questions prior to submission. After an initial screening of the data, no cases were removed from the sample.

The initial view of the data showed gender distribution to be far from balanced with only 26.8% of the respondents being female and 73.2% being male. The mean age of the respondents was 28, with age ranging from 20 to 54. The majority of the respondents were highly educated with 57.32% of them having bachelor’s degrees and 21.95% postgraduate degrees.

3.2 Constructs Measurements

All questionnaire items were measured on a seven-point Likert scale ranging from “strongly disagree” to “strongly agree”, with the exception of the constructs sustainability trust and sustainability risk, where items meas-
urement points varied between “very unlikely” and “very likely”. Definitions and measurements of the constructs employed in this study are explained in the following sections.

3.2.1 Sustainability Information Seeking (WSS)

To measure sustainability information seeking, this study employs the following items adapted from (Borah, 2014): (1) regarding sustainability issues, I seek more information supporting my opinion; (2) regarding sustainability issues, I seek more information supporting the other opinions; (3) regarding sustainability issues, I seek more information that offers a balanced view; (4) regarding sustainability issues, I seek more opinions supporting my point of view; (5) regarding sustainability issues, I seek more opinions supporting the other points of view.

3.2.2 Dependency on Social Media for Sustainability Information (DSM)

Measurement for dependency was adapted from the action orientation scale developed by Grant (1996). Respondents were provided by seven items to indicate the extent to which social media information helped them to: (1) decide whether to buy sustainable products/brands or not; (2) decide which products/brands are sustainable and which are not; (3) decide whether to buy a certain sustainable product/brand or not; (4) know what sustainable products/brands make good impressions on others; (5) decide what sustainable products/brands to buy; (6) decide between different sustainable products/brands alternatives; (7) choose the right sustainable product/brand.
3.2.3 **Sustainability Risk on Social Media (SR)**

Five items were adapted from Chen and Change (2012b) to measure the perceived risk when respondents read negative statements from other users on social media, regarding products/brands sustainability features: (1) the product/brand will not meet desired sustainability criteria; (2) the product/brand will not work properly with respect to sustainability requirements; (3) I would face negative consequences if I use this product/brand (because of social or environmental harm); (4) using the product/brand will negatively affect sustainability aspects (e.g. environment, work conditions, etc.); (5) using the product/brand would damage my reputation or image as a person who cares about sustainability.

3.2.4 **Sustainability Trust on Social Media (ST)**

Respondents were provided with five items adapted from Chen and Change (2012b), to measure their perceived trust in products/brands once they read positive statements from other users on social media, regarding sustainability features: (1) the product/brand’s sustainability reputation is generally reliable; (2) the product/brand will work properly with respect to sustainability requirements; (3) the product/brand’s claims regarding sustainability are generally trustworthy; (4) the product/brand’s concerns about sustainability meet my expectations; (5) the product/brand keeps promises and commitments regarding sustainability.
3.2.5 **Intention to Purchase (IP)**

This research refers to Chen and Change (2012b) to measure intention to purchase. Six measurement items were included: (1) I intend to purchase sustainable products/brands because of their sustainability concerns; (2) I expect to purchase sustainable products/brands in the near future; (3) I avoid buying products/brands which are potentially un-sustainable; (4) overall, I am glad to purchase sustainable products/brands because they are sustainable; (5) when I have to choose between two similar products/brands, I choose the one that is more sustainable; (6) I will not consider the sustainability related issues when making a purchase.

3.3 **Data Analysis**

We performed the data analysis using the PLS-SEM approach. Researchers concur that PLS presents a very attractive and solid approach to analyzing data especially when dealing with small sample sizes such as the present case. The PLS approach regroups two steps; during the first, we examined the measurement (outer) model to ascertain its reliability and validity. Then, in the second step, we assessed the structural (inner) model with regards to the significance of its paths and R^2 values. Our software of choice for the purpose of this analysis was SmartPLS 3.0 Professional.

3.3.1 **Measurement Model Assessment**

The first criterion we examined was the indicator reliability, according to (Chin, 1998) and Hulland (1999) indicator reliability is confirmed if each indicator has a loading value of 0.70 or higher. Our results showed that, for
the larger part, the items’ loadings were highly satisfactory; the only exceptions were: three IP indicators that presented values lower than the required threshold and therefore were excluded. Satisfyingly, the Average Variance Extracted (AVE) for IP increased vigorously ensuing the deletion of the three indicators. Howbeit, following the recommendation of Hair et al. (2014) four indicators were kept although boasting outer loadings below the 0.70 threshold. These items are: WSS4, SR3; SR5 and IP3, particularly since the loss of content that would result from their deletion surpasses any benefits that may result from keeping them (increase in AVE and/or composite reliability).

Turning to the internal consistency reliability, we used composite reliability (CR) to measure it as advised by Hair et al. (2014); Generally, a CR of 0.70 or higher is regarded as acceptable for research (Bagozzi and Yi, 1988; Chin, 2010; Henseler et al., 2009; Vinzi et al., 2010). Favorably, the product of the analysis estimated all CR values for the present model at 0.70 or higher (see Table 1).
<table>
<thead>
<tr>
<th>Construct</th>
<th>Item</th>
<th>Loading</th>
<th>Indicator reliability</th>
<th>Composite reliability</th>
<th>AVE</th>
<th>t-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM</td>
<td>DSM1</td>
<td>0.85</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM</td>
<td>DSM2</td>
<td>0.89</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM</td>
<td>DSM3</td>
<td>0.94</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM</td>
<td>DSM4</td>
<td>0.71</td>
<td>0.5</td>
<td>0.96</td>
<td>0.77</td>
<td>9.13</td>
</tr>
<tr>
<td>DSM</td>
<td>DSM5</td>
<td>0.93</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM</td>
<td>DSM6</td>
<td>0.9</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM</td>
<td>DSM7</td>
<td>0.88</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>IP1</td>
<td>0.87</td>
<td>0.76</td>
<td></td>
<td></td>
<td>22.68</td>
</tr>
<tr>
<td>IP</td>
<td>IP2</td>
<td>0.81</td>
<td>0.65</td>
<td>0.84</td>
<td>0.63</td>
<td>7.97</td>
</tr>
<tr>
<td>IP</td>
<td>IP3</td>
<td>0.7</td>
<td>0.48</td>
<td></td>
<td></td>
<td>8.13</td>
</tr>
<tr>
<td>Construct</td>
<td>Item</td>
<td>Loading</td>
<td>Indicator reliability</td>
<td>Composite reliability</td>
<td>AVE</td>
<td>t-Value</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>SR1</td>
<td></td>
<td>0.87</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR2</td>
<td></td>
<td>0.84</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR3</td>
<td>SR</td>
<td>0.64</td>
<td>0.41</td>
<td>0.88</td>
<td>0.6</td>
<td>3.64</td>
</tr>
<tr>
<td>SR4</td>
<td></td>
<td>0.84</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR5</td>
<td></td>
<td>0.64</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST1</td>
<td></td>
<td>0.89</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST2</td>
<td></td>
<td>0.85</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST3</td>
<td>ST</td>
<td>0.83</td>
<td>0.69</td>
<td>0.93</td>
<td>0.72</td>
<td>13.95</td>
</tr>
<tr>
<td>ST4</td>
<td></td>
<td>0.79</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST5</td>
<td></td>
<td>0.87</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consequently, as a result to the first two assessments, the models’ reliability has been established. Next, we use AVE to assess the convergent validity. Typically, an AVE that is higher than 0.50 is required. Here, all AVE values were observed to be superior to 0.50 with SR having the lowest AVE (estimated at 0.59).

Finally, we used the Fornell-Larcker criterion (See Table 2) and the Heterotrait-Monotrait Ratio of Correlations (HTMT) criterion (See Table 3) to assess the discriminant validity. Our findings, visible in Table 3, clearly show all HTMT values to be lower than 0.90. As a result, the condition for discriminant validity is satisfied.
Table 2 Discriminant validity assessment- Fornell-Larcker criterion

<table>
<thead>
<tr>
<th></th>
<th>DSM</th>
<th>IP</th>
<th>SR</th>
<th>ST</th>
<th>WSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>0.50</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>0.27</td>
<td>0.25</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>0.53</td>
<td>0.36</td>
<td>0.47</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>WSS</td>
<td>0.58</td>
<td>0.44</td>
<td>0.16</td>
<td>0.18</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Table 3 Discriminant validity assessment- HTMT criterion

<table>
<thead>
<tr>
<th></th>
<th>DSM</th>
<th>IP</th>
<th>SR</th>
<th>ST</th>
<th>WSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>0.28</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>0.56</td>
<td>0.43</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSS</td>
<td>0.62</td>
<td>0.55</td>
<td>0.20</td>
<td>0.18</td>
<td></td>
</tr>
</tbody>
</table>
3.3.2 Structural Model Assessment

First, we calculated the Variance Inflation Factor (VIF) values to uncover any possible collinearity issues. Our findings (See Table 3) show all VIF estimates to be smaller than 5; therefore this model satisfies the recommendation of Hair et al. (2014) in regards to collinearity.

Next, we calculated t-values to examine the significance of path coefficients. Hair et al. (2014) suggest the number of bootstraps to be set to 5000. For two-tailed tests, the significance thresholds for the t-values are 2.58, 1.96 and 1.75 for 99%, 95% and 90% confidence level respectively (Hair et al. 2014).

Our results (See Figure 1) show that WSS > DSM, DSM > ST, ST > IP and DSM > IP are significant at 99% confidence level (t-value > 2.58); they also show DSM > SR to be significant at 95% confidence level (t-value > 1.96). Furthermore, the path coefficients for these relationships were estimated at 0.20

![Figure 1 Path coefficients and significance level of the relationships](image-url)
Table 4 Assessment results of the structural model

<table>
<thead>
<tr>
<th>Endogenous variable</th>
<th>Exogenous variable</th>
<th>Path coefficient</th>
<th>VIF</th>
<th>t-value</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM (R²=0.34)</td>
<td>WSS</td>
<td>0.58</td>
<td>1</td>
<td>8.10</td>
<td>0.51</td>
</tr>
<tr>
<td>ST (R²=0.28)</td>
<td>DSM</td>
<td>0.53</td>
<td>1</td>
<td>5.75</td>
<td>0.39</td>
</tr>
<tr>
<td>SR (R²=0.07)</td>
<td>DSM</td>
<td>0.27</td>
<td>1</td>
<td>2.47</td>
<td>0.08</td>
</tr>
<tr>
<td>IP (R²=0.27)</td>
<td>DSM</td>
<td>0.50</td>
<td>1.39</td>
<td>5.75</td>
<td>0.18</td>
</tr>
</tbody>
</table>

or higher which satisfies the minimum threshold suggested by (Chin 1998) for path coefficients. The only relationship that did not satisfy the minimum requirements for significance was SR > IP with a t-value estimated at 1.91. As a result Hypothesis 5 (SR > IP) was rejected.

We then calculated the R² values for each exogenous variable in our model. The results (displayed in Table 3) show that three out of the four endogenous variables are well explained by their relationships. The highest R² was estimated at 0.34 for DSM, followed by ST (0.28), IP (0.27) and finally SR (0.07). It is important to know that, typically, a R² of 0.20 is regarded as high in the field of consumer behavior (see Hair et al. 2011; Hair et al. 2014).

To summarize, the findings of the present research show that all hypothesized relationships outside of H5 are supported. Therefore we accept H1,
H2, H3, H4 and H6. Furthermore, the results of the effect sizes (f^2 values) show that the strongest effect size recorded was for Sustainability information seeking on Dependency on social media for sustainability information (0.51), followed by the effect of this latter on Sustainability trust (0.39) and to a smaller degree on Sustainability risk (0.08). For Intention to purchase the only construct that had a relatively significant effect was Dependency on social media for Sustainability information estimated at 0.18; the remaining effect sizes were too small (< 0.02) and were therefore deemed insignificant.
4 Conclusion

The major aim of this study was to identify the effects -if existent- of social media on consumer's purchase behavior when it comes to sustainable products/brands; for that purpose, we conducted an online survey and used structural equation modeling to analyze the data. The results of the analysis helped lay out the main drivers influencing consumers' intention to purchase a product/brand; they also served to measure the size of their impact. Our findings showed that consumers' willingness to seek sustainability information pushes them to regard social media as an important source for this specific type of information; this resulting dependency in turn affects their' views -both positive (trust) and negative (risk)- of the product/brand's position associated with sustainability. Furthermore, consumers' intention to purchase a certain product/brand was found to be subject to their dependency on social media for sustainability information. Interestingly, results show that while perceived trust in positively commented products/brands on social media has a significant influence on purchase intention although small, the corresponding influence of perceived risk was noted to be insignificant.

To conclude, we can say that it is now clear that social media do in fact influence consumers' behavior and choices in regards to sustainable products/brands; and as much as it is proof of a new era consumer empowerment, it is proof of the dependency of many on social media for this type of information.
References

Markos-Kujbus, E., Gati, M., 2013. Social Media’s new role in Marketing Communication and its Opportunities In Online Strategy Building., Corvinus University of Budapest.

